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Abstract—We present ongoing work on a system for au-
tonomous driving with a global planner that arbitrates the
activation, execution, and control of a set of local skills. The
local skills, to be implemented as POMDPs, set the control inputs
for speed and steering. Our system relies on a probabilistic
localization of the robot on the road. We are at an early stage
of our research, but we already have a working probabilistic
perception system and a working controller. We focus on the
definition of the skill POMDPs to be implemented.

I. INTRODUCTION

In this paper we present an application of POMDPs to
the problem of skill representation for autonomous driving.
Autonomous driving has captured a lot of interest since the
DARPA challenge (e.g., Levinson et al. [8]) showed it to be
viable with recent technologies. Moreover, fully autonomous
vehicles may significantly reduce accidents. Also, networks of
autonomous vehicles could alleviate traffic congestion.

Autonomous driving involves a highly dynamic environment
where cars need to plan and actuate fast while being responsive
to unexpected situations. In such scenarios, cars frequently
switch between tasks such as parking, passing a car and
switching lanes. Also, they need to reason about the long term
effects of their actions.

Here we present ongoing work on autonomous driving
where we propose a global planner for tasks that selects active
and controlling skills that set the control inputs for speed and
steering. We do not rely on a global map nor on global sensors.
Instead, we make a probabilistic localization of the road in the
vicinity of the robot using on-board sensors.

The global planning part of this approach is discussed in
work submitted to a separate workshop. This paper focuses on
the definition of skills that we propose to implement through
Partially Observable Markov Decision Processes Bai et al. [1].

Although this is a very early version of our work, we already
have working components for perception, localization, and
low-level control. We are currently working on the motion
planning component with a scale model of the car and the road.
The AutoNOMOS mini robot version 1.0 Rojas and Boroujeni
[9] equipped with a laser scanner (RPLiDAR 360◦), Intel
3D Camera SR300, an IMU and an on-board Linux system
running ROS [10]. We currently only use its proprioceptive
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motor sensors, the RGB data of its frontal camera and the
LiDAR (in the future we plan to only use the camera).

II. RELATED WORK

Different levels of driving autonomy were defined by SAE
[11]. Each of these levels require increasing capacities on
perception and planning in order to detect objects and respond
to events according to the situation giving priority to safety.
Most current approaches for this depend on a combination of
vision, laser scanner and GPS.

When driving a vehicle there are several tasks that have to be
accomplished simultaneously such as crashing and keeping the
vehicle on its lane. This is a suitable application for integrated
task and motion planning Fainekos et al. [5], Bhatia et al. [2]
that exploits the ability of symbolic task planners to express
tasks in terms of conditions and sequences of actions with the
effectiveness of motion planners to define motions required to
achieve a specific configuration.

Sampling based motion planners have been applied to
vehicle driving. One case is Kuwata et. al. Kuwata et al. [7]
who apply nonlinear control and RRTs.

POMDPs have been applied to autonomous driving.
POMDPs are costly but they are better than greedy alterna-
tives for long term planning. Foka and Trahanias Foka and
Trahanias [6] propose a hierarchical POMDP for localization,
planning and local obstacle avoidance with good real time
results in both simulated and real environments. Vitus and
Tomlin Vitus and Tomlin [14] model the behaviour of human
drivers to determine the best action for the robot. Ulbrich and
Maurer Ulbrich and Maurer [13], implement lane changes
using signal processing networks which define eight states,
keeping complexity low. Bai et. al Bai et al. [1] address the
problem of driving in a crowd through an online POMDP as
a speed planner that runs in almost real time.

III. PROBLEM DEFINITION

Here we address a simplified version of the problem of
autonomous driving for a car on a two-way road using a
scale model. The road has one lane for each direction. It may
also have crossroads. There is no global map available of the
road, thus decisions need to be made locally only with the
information captured on-the-fly. Basically, we want the car to
traverse the road as it would be expected from a human driver,



but we limit its behaviors. It should traverse the road on its
lane when it is the only car. If it catches up with a car that
goes at a very low speed, it should overtake it. At crossroads
it should stop and wait for its turn to cross.

IV. THE ROBOT AND ITS ENVIRONMENT

Here we describe the perceptual components of our ap-
proach and how we model the environment.

A. Local probabilistic localization

We first localize the robot with respect to the road based
on the visual input and a standard probabilistic estimation of
states. We feed the camera data to a road line recognition
program [3] that performs an inverse perspective mapping to
obtain a bird’s eye view of the road. Next, it applies a Canny
edge detector. Finally, it applies Random Sample Consensus
(RANSAC) for fast line fitting into Newton Polynomials. We
assume that the car can see at least one road line and that
there are no significant reflections. Insufficient data points due
to obstruction or partial visibility of lines can be problematic.

Once we have a set of lines, we estimate the state of the car
with respect to the road as a discrete probabilistic distribution
(Fig. 1). First, we compute the distance in pixels between the
car and the observed lines. Next, based on these distances we
determine the states consistent with the observation marking
them as hit and the others as miss. Finally, the Bayes Rule
and normalization are applied over the distribution.

B. Obstacle Detection

In order to detect obstacles, such as cars, we use the LiDAR
which produces a 2D point cloud data around the car in a range
up to 6m in our scale model. So far we only identify clusters
that we use to map to grid cells in our environment model
described in Sect. IV-C.

C. Environment Model

We model the environment locally around the robot as a
grid as shown in Fig. 1. On one dimension we have the
same information as gathered from the localization system.
On the other dimension we have the equally spaced values
for distance from the car. Thus, each cell represents a pair of
lane localization, distance from the car. The perception system
also marks the cells that may be occupied by obstacles (e.g.,
other cars) within the perception range (a shaded circle in the
figure). The resulting map is not complete nor accurate since
the robot is moving and the probabilistic localization provides
a robot pose with high uncertainty.

V. GLOBAL AND LOCAL PLANNING

We propose a system that interleaves global and local plan-
ning based on Rodney Brooks’ subsumption architecture [4]
which keeps a set of behaviors as a referee picks one to
execute while subsuming all the other behaviors. At the global
level, we describe the tasks that the car should execute. At
the local level, we propose to keep a set of skills encoded
as Partially Observable Decision Processes (POMDPs) that
may be labelled as inactive or running. Out of the running

Fig. 1. States defined for the road lanes: Do not know left (DNL), Out left
(OL), Left left (LL), Left center (LC), Center center (CC), Right center (RC),
Right right (RR), Out right (OR), Do not know right (DNR)

skills, one and only one is in control of the robot. The local
planners also provide feedback to the global planner regarding
the potential validity of the future states.

The available skills model clearly different behaviors for the
car including driving the road, negotiation of an intersection,
parking, changing lanes, emergency stop.

A. Global planner

The global planner is in charge of coordinating the skills.
We currently propose a Task Planner based on LTLs, which
we are describing in a poster submitted to another workshop
in RSS. Here we focus on the interaction between the global
and local planner.

The global planner is designed around the main goal of
identifying the most relevant skill to use according to the
current situation. It determines the next goal based on the
states of the environment model processed by the perception
system that, in addition to the states of the environment, also
provides information about the presence of other objects in
the surrounding area. Then, it keeps running the skills that are
consistent with that goal and perceptual input and it makes a
plan of the next cells to visit. Then, it gives control to the skill
that is the most suitable to achieve the next goal.

B. Local planning with POMDP

We propose to define a set of POMDPs as skills so that
the global planner decides which ones are in control, running
or inactive depending on sensors information. Some of these
POMDPs will share the following elements of the tuple
〈S,Z,A, T,O,R, γ〉.
• S: The set of discrete states (squares in our grid world)

to consider as function of the sensors observations, such
that |S| = NS .

• Z: The set of observations made by our sensors, used to
partially build our grid world, such that |Z| = NZ .

• A: The set of actions the car can execute. For simpli-
fication we consider high-level definitions, with seven
possible move actions: A = {↖, ↑,↗,↘, ↓,↙,�},
where � means not to move. These actions are defined
by the non-holonomic constraints of the car.

• γ ∈ [0, 1]. We use a discount factor of γ = 0.5 in
E[

∑∞
t=0 γ

trt] to give equal weight to immediate and
future rewards.



• T : S × A × S → [0, 1] such that T (s, a, s′) =
P (s′|a, s) = psas′ , with psas′ assigned by a joint
probability of failure in the car sensors and mechanical
imprecision when executing an action.

• O : Z×A×S → [0, 1] such that O(z, a, s) = P (z|a, s) =
pzas, where pzas is an estimation of the current state of
the car.

The main difference between these two POMDPs are the
rules to assign rewards to the states as follows:
• Ri : S × A → R, i = 1, 2. We assign high costs ch to

states with obstacles, medium costs cm to states outside
the lanes and low costs cp to states matching obstacle-free
lanes. Thus, we define the reward function for each for
each POMDP in order to achieve the following behaviors:

1) R1 (Drive and overtake): Generally drive in the
right lane and overtake obstacles when possible.

2) R1 (Deal with a crossroad): Stop (�) at crossroads
and move on when its turn comes.

Figure 1 illustrates this tuple with the car at state RC0.

Remark 1. 0 < NZ ≤ NS .

Remark 2. In order to work on different types of roads we
will need to estimate NS −NZ states.

Remark 3. rh < rm < rp.

For any additional skill a new POMDP can be defined (e.g.,
Decisions for parking and Passing roundabouts). Important
aspects when added POMDPs are their state definitions and
the global planner mechanisms to choose among them.

This approach seeks to reduce computing costs by reducing
the size of one POMDP. An important algorithmic challenge
is to determine a solution. At [12] an efficient way to exploit
the sparsity of the matrices and avoidance of solving linear
programs for value iteration reduces computing time. Parallel
solution computing addresses the issue, but may result on
resources not used efficiently

.

VI. CONTROL

We control the driving speed and steering angle. The driving
speed is constant. The steering angle is determined through a
Proportional and Integral (PI) controller which receives the
target state in pixels and vision feedback from the camera.

VII. CONCLUSIONS

Here, we present ongoing work on a system for autonomous
driving with a global planner that arbitrates local skills to be
represented as POMDPs. The local skills set the control inputs
for speed and steering. Our system relies on a probabilistic
localization of the robot on the road. We are at an early stage
of our research, but we already have a working probabilistic
perception system and a working controller. Here we focus
on the way we describe the POMDPs which we are currently
implementing.
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